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The Theory of X-ray Crystal Diffraction for Finite Polyhedral Crystals. III. 
The Bragg-(Bragg) m Cases 
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The plane-wave and spherical-wave theories are described for the Bragg-(Bragg)" cases. The treatment 
is similar to that of Parts I and II [Saka, Katagawa & Kato (1972). Acta Cryst. A28, 102-113, 113-120] 
for the Laue-(Bragg) ~ cases. In the plane-wave theory of the Bragg case, a few aspects which up to now 
have not been well understood, are described to clarify the mathematical structures of the wave field. In 
particular, emphasis is put on a method for specifying the plane-wave solution by using a Riemann 
sheet instead of the dispersion surface. In the spherical-wave theory, the reflected vacuum wave and the 
transmitted crystal wave at the entrance surface can be represented by two Bessel functions. The crystal 
wave of the Bragg-(Bragg)" case reflected at the exit surface is represented by a combination of two 
Bessel functions. The transmitted vacuum wave, however, is given by a combination of four Bessel 
functions. It is shown that the solutions are compatible with those of the Laue-(Bragg)" cases. The 
solution for finite polyhedral crystals can be constructed by superposing the solutions for individual 
cases such as of Laue, Laue-(Bragg) m [Kato (1968). J. Appl. Phys. 39, 2225-2230; Parts I and II] and 
Bragg-(Bragg)" obtained in the present paper. A comparison is made with Uragami's results obtained 
by another approach [J. Phys. Soc. Japan (1969), 27, 147-154; (1970), 28, 1508-1527]. 

1. Introduction 

Following Parts I and II (Saka, Katagawa & Kato, 
1972a, b), this Part treats X-ray diffraction for the 
crystals bounded by plane surfaces in an arbitrary 
way, but under  the condition that the Bragg-reflected 
wave emerges from the entrance surface. Both the 
plane-wave and spherical-wave theories are formulated. 
The diffraction phenomena  under  this geometrical 
condit ion are specified by the Bragg-(Bragg)" cases 
(m = 0 , 1 , 2 , . . . )  in the present terminology. 

Tradit ionally,  plane-wave theories have been devel- 
oped for semi-infinite crystals or parallel-sided crystals 
(e.g., Zachariasen,  1945). The rays associated with the 
wave fields were discussed by Wagner  (1956). The 
present theory is an extension of  these theories re- 
garding the crystal form. The spherical wave treat- 
ments were developed by Uragami  (1969, 1970) based 
on the dynamical  theories of  Takagi (1962, 1969) and 
Taupin (1964).* The present results are essentially 
equivalent to those of  Uragami except for a constant  
factor, a l though the formulat ion is quite different. It 
is shown that the correct solution can be obtained in 
Uragami ' s  formulat ion if  one correctly takes into 
account the ampli tude and phase of  the incident wave. 

According to the present general approach,  the 
plane-wave solution is first formulated and then the 
spherical-wave solution is obtained by Fourier  trans- 
format ion of  the plane-wave solution. The exact 
Fourier  integrals required are obtained by the standard 
contour integral method. In order to justify the con- 
tour adopted, one needs to prove some mathematical  

* Recently, Afanas'ev & Kohn (1971) have also solved the 
problem for parallel-sided crystals using the Takagi-Taupin 
approach. 

structures of  the plane-wave solution. These subjects 
were reported in a separate paper  (Kato, Katagawa 
& Saka, 1971). The important  results are summarized 
at the beginning of the next Section.'~ 

Except for the details, the formulat ion for the 
Bragg-(Bragg)" cases is surprisingly similar to that for 
the Laue-(Bragg) m cases in both the plane-wave and 
spherical-wave theories. Combining  the wave fields 

J" Some of the results have also been obtained by Fingerland 
(1971) in a different form. 

]' K' 

E 

PK 

, /  .c ~ p 
K So I 

c 
Fig. 1. The Bragg case. Se: Entrance surface. E: Entrance 

point. P: Observation point. PhP=lo, PtP=lg, H~P=xo, 
HKP=xg. Xo is positive when P is on the left side of ll'. xg 
is positive when P is on the right side of KK'. HcP=t= 
[ne. (r-re)]: The depth of the observation point P from the 
surface So. 
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obtained in the present and previous papers (Kato, 
1968; Parts I and II), one can construct the wave 
fields arising from diffraction for the crystals of any 
polyhedral shape. 

In the following, equations, figures and tables of 
Parts I and II will be referred to by the Roman 
numbers I and II respectively. Often, the notations of 
the previous Parts will be used without further explana- 
tion. 

2. The Bragg ease 

(a) Plane-wave theory 
When an incident wave Ee exp [i(Ke • r)] falls on the 

entrance surface under the condition of the Bragg 
case (Fig. 1), the following waves are excited: the 
crystal waves: 

a~(r) =Ee exp {i[(Ke. re)+(k0. ( r - re))])  (la) 

dg(r) = c exp [2zci(g. re)] Ee exp {i[(Ke. re) 
+(kg. (r-re))]} (lb) 

the vacuum wave: 

Eg(r) = c exp [2~i(g. re)] Ee exp (i[(Ke. re) 
+ (K. .  ( r - re)) ] )  (lc) 

where k0, kg = k0 + 2rcg and Kg are the wave vectors of 
the relevant waves. As constructed in Fig. 2, they are 
connected with Ke through the tangential continuity 
on the entrance surface and, in terms of the deviation 
parameter s defined by equation (I.10) or Kx, x 
component of Ke, given in the forms 
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Fig. 2. The construction of the dispersion points (the Bragg and 
Bragg-Bragg cases), ne: The inward normal of the entrance 
surface S,. na : The outward normal of the exit surface Sa. 

LO=l~o, LO=ko,  EO=Ke,  DO=k0,  DrO=k0, ,  £G=Rg ,  
__). _ _..). .__). -->. 
LG=kg,  RG=Kg, DG=kg, DrG=ka,~. 
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Fig. 3. The specification of a crystal wave by means of (a) the 
dispersion surface and (b) the negative Riemann sheet 
[-(s2-f12)l/2]. The bold lines correspond to each other. 
T ~1) and TO2): The tangential points of the line ne to the 
dispersion surface. 

k 0 = K e -  { - ½  KXo + ~ ( s + ~ ) } n e  (2a) 
7o 

K~ sin 20e 
Ko = Ke + ne + 2~g.  (2b) 

The factor c is given by the amplitude continuity as 

( X O ) 1 / 2 1 / /  YO - s - T - ~  2 (3) 
c =  ~ 17ol P " 

Here, ~ and fl are defined in the present case as follows 

sin 20B 
~ -  21rg~ (4a) 

ro s i n 2 O B - r - ~ o  p~" (4b) 

A C 29A - 6* 
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The double signs associated with Vs~-f l  2 correspond 
to the wings (a) and (b) of the dispersion surface [see 
Fig. 3(a)]. 

The solution described above is well known (e.g., 
Zachariasen, 1945). Here, however, some important 
properties are summarized for the further develop- 
ment of the theory. The mathematical proofs have 
been given in a separate paper (Kato, Katagawa & 
Saka, 1971). 

The Poynting vector of the crystal Bloch wave 
given by equations (I) must satisfy the condition, 

(s .  ne) >_ 0 .  (5) 
This is required by the boundary condition that no 
wave arrives at the entrance surface from the crystal 
side. In the Bragg case, unlike the Laue case, only one 
of the solutions specified by the double signs of V Sz--fl z 
satisfies the requirement (5) for a given incident wave. 

In fact, if one considers the quantity _+ ~sZ-f l  ~ on 
the positive and negative Riemann sheets of the com- 
plex plane, the solution meeting requirement (5) is the 
one represented* by - ( sZ - f l z )  ~/z. Also, it has been 
proved that such a Bloch wave is always attenuated in 
the crystals. These properties are true irrespective of 
the magnitude of the absorption and the presence of 
centrosymmetry. The solution concerned here cor- 
responds to the wings of the dispersion surface which 
are drawn as bold curves in Fig. 3(a). 

In addition, a few significant properties of the plane- 
wave solution are described by representing the solu- 
tion on the Riemann sheet. In Fig. 3(b), any mathe- 
matical solution can be represented by a single point 
specified by z. It becomes singular when z = _+ ft. For a 
given crystal and the geometrical conditions, fl", fli and 
s~=Im(s) are fixed. In general, the condition s~> I/~al 
is always satisfied owing to the property of the Fourier 
coefficients, Z~ > Izgl. For this reason, the physically 
significant solution is specified by a single point on 
the bold line in Fig. 3(b), and is no longer singular. 
This property is important in constructing the spherical- 
wave solution from the plane-wave solution. 

It can be proved that the maximum of the rocking 
curve is given by the condition 

s" s' = fl" fl' (6) 

which is obviously a hyperbola passing through z =  
+fl, the asymptotes being the coordinate axes of the 
complex plane [see Fig. 3(b)]. The maximum position 
is simply izonstructed by taking the intersection M 
of the line of constant s ~ and the hyperbola mentioned 
above.t 

* In this paper, co=(sZ-flz) ~/z means the solution of coz= 
(sZ-fl z) in which Re(co) is positive for a large value of Re(s) = 
s', whereas ~=I/s2-flZ-is defined always by Re(~)>0 or 
Im(~) > 0 when Re(~) = 0" 

t Fig. 3(b) is concerned with the case where fl~>0 and 
fl~ < 0. When fl'fl~ > 0, one of the points representing + fl and 
the hyperbola appear in the first quadrant. In any case, the 
maximum of the rocking curve occurs only at a single value of 
S r , 

As a preparation to the spherical-wave theory, an 
alternative expression of the wave fields (la, b and c) 
is presented here. By the treatment explained in Ap- 
pendix B of Part I, the common phase term in equa- 
tions ( la  and b) is reduced to the more convenient 
form, 

{(k0-Ke) .  ( r-r~)} +(Ke.  r) 

=K,y+K=z+½KXo(/o+lo)+Ar/olo+AqJo (7) 

where the 'Resonanzfehler' Ar/0 and Aqg are defined 
by the same equations (I.15a and b) as in the Laue 
case, their explicit forms being listed in Table 1, and 10 
and lg are the coordinates of the observation point P 
referred to the oblique axes K0 and Kg with the origin 
at the entrance point E in Fig. 1. By substituting the 
concrete expressions for the 'Resonanzfehler' into 
equation (7), the plane-wave solutions can be rewritten 
in a similar form to equations (I.11a and b) for the 
Laue case, 

do(r)=EeAo exp {i[--l]l(S2--f12)l/2--tIzS]} (8a) 

z -o  lyol /~ 
x exp { i [ - ,h(s  2 _fl2)~/2_ r/2s]} (8b) 

where, the quantities rh and q2 are linear functions of 
the position parameters x0 and t of the observation 
point P, which are defined in Fig. 1. The explicit 
expressions of rh and q2 are listed in Table 2. The 
quantities A0 and A o are previously defined by equa- 
tions (I.13a and b) and the constant phase P involved 
can be written as ½Kzo(lo+lo) also in the present case. 

Table 1. The explicit forms o f  the Resonanzfehler 

zlr/0 ~,0~{-s+(s2-/~') '~' } 
4 ~  lyol~{-s-(sZ- jO') az2} 

Table 2. The explicit forms o f  11i and ( 

~h - st 
t12 Xo + st 

70 

The phase term in the vacuum wave (lc) is rewritten 
in the form, by the use of the relation r - r e = l o f ( o +  

/oI(o, 

Kx sin 20n 

where 

( ( r -  re). he) + (Ke. r) + 2zffg. r) 

= K y  + Kzz + 27r(g. r) + P o -  ~s (9) 

The analytical expression for position parameter ~ is 
shown in Table 2. Thus, the wave field (lc) is trans- 
formed to 
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Eo(r)= EeAo ~ ( Zo ]1/2 
• Z - o !  

/ /70  - s +  (s ~-/3')"2 
× 1791 /~ exp ( - i (s )  (11) 

where 
Ag, r=expi(Kyy+K~z+2rc(g.r)+Po). (12) 

Note that the phase term proportional to (sZ-flzy/z 
vanishes in this case. 

(b) Spherical-wave theory 
According to the general approach adopted in the 

present series of papers, the spherical-wave solutions 
are given by a Fourier transform of the plane-wave 
solutions (8a, b and 11). After performing the integra- 
tion of Ky, the wave fields can be represented in the 
same form as equations (I.47a and b); 
crystal waves: 

~o(r) = WoBoEe (13a) 

1/2 
~ m  

I / J #  WgBoEe. (13b) ~bg(r) = ( ~ _ ~ ) l /  [),g 

vacuum wave: 

~o(r ) = 70 Wo ~"o ,E~ (13e) ' . 

where 

Wo= f~_~ exp {i[-~h(SZ'fl2)t/Z-rhS]} ds" (14a) 

x exp {i[-~h(sZ-fl2)m-~hS]} as ~ (14b) 

wo = f °° 'r -oo /3 exp ( -  i(s)ds" (14c) 

and 
i 1 /27c  7c 

Bo,.= - ~ 5 - V - ~ - e x  p [ i ( -  ~- +Po+Kz+Z~z(g.r))]. (15) 

It is significant that only a single Riemann sheet is 
concerned in the present integral. According to Ap- 
pendix A, the final expressions for the wave fields are 
given in the forms: 

xo I~ol Xo Jl(flo l/~oXo) BoE~ 
7o 

for xo > O 
=0 forxo<O (16a) 

Xa ]~/2 
~bg(r) = i~zflg \ - ~ o /  {Jo(flg ]/XoXo) 

+ [7ol x__Ao J2(• ~x~oxo)} x BoE~ for xo>O 
~o xo 

=0  forxo<O (16b) 

( Xo ~ 1/2 

+ J2(flo l / ~  xo)} x Bo, rE , for xo>0 
=0  f o r x  o < 0 ,  (16c) 

where x0 and x o are the normal distances from the 
observation point P to the lines EI and EK respectively 
in Fig. 1, and Ji are Bessel functions of the ith 
order. The condition for the wave fields to take an 
appreciable value is different from that of the La-ue 
case. The wave fields (16a and b) exist on the left side 
of the line H '  in Fig. 1. We, however, have to be con- 
cerned only with the inside of the crystal, namely the 
triangular region IEC. The solutions in the region 
I'EC are merely virtual. The argument [/xox0] therefore, 
should be regarded as real. 

The behaviour of the crystal waves is essentially 
similar to that of the Laue case. The O wave field, 
however, is always zero on the entrance surface, 
where (Xo/Xo)(lTol/yo) 1 is satisfied. As distinct from 
the O wave, the G wave is not always zero on the crystal 
Surface, but attenuates rapidly as Jo+Jz=2J~(flo~)/ 
(floO),.~(flo~) -3/2 where Q= l/),0/[),oixg. Note, then~ that 
the crystal wave is identical with the vacuum wave on 
the crystal surface, as should be s o from the boundary 
condition. 

The wave field q)o(r) (16c) exists on the right side 
of the line KK'. Again, however, one must be concerned 
with only the region KEC. The solution on the right 
side of the crystal surface is a virtual one. Owing to the 
functional form, the fringe system of the vacuum wave 
is parallel to the line KK'. The vacuum wave field is 
essentially the projection of the crystal wave field on 
the crystal surface along the direction ff'o. It is worth 
noting that, unlike the Laue case, all the wave fields 
(16) depend on the geometrical factor !7a1/70. 

3. The Bragg-(Bragg) m case 

(a) Plane-wave theory 
When the crystal is terminated by another surface 

Sa on which the condition of the Bragg case is satisfied, 
the O wave is partly transmitted into vacuum and the 
G wave is totally reflected. From the standpoint of the 
plane-wave considerations, the Bloch wave associated 
with the dispersion point D in Fig. 2 excites a reflected 
Bloch wave and a transmitted wave. The dispersion 
points D, and T are uniquely determined from the 
initial one D by the same construction as in the Laue- 
Bragg case, Type II. The treatment described in Part I, 
therefore, can be applied to the present (Bragg-Bragg) 
case .  

In the case of weakly absorbing crystals, the reflected 
Bloch wave arrives at the surface Se,* and moreover, 

* Here, the entrance surface Se plays the role of the exit 
surface for the reflected Bloch wave (see the definitions of the 
entrance and the exit surfaces in Part I). To avoid confusion, 
S, and 5', will be called the front and rear surfaces respectively. 
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multiple reflections at the surfaces S. and Se may be 
expected. The phenomena are denoted by the Bragg- 
(Bragg)" cases in the present terminology, and they 
can be analysed in the same way as the Laue-(Bragg) ~ 
case, Type II. In the following, the equations of  Part 
II are often referred to, but the subscripts must be 
changed according to Table 3. 

Table 3. The correspondence of  the notations in the 
Laue-(Bragg) m case, Type II, and the Bragg-(Bragg) m 

case 
Laue-(Blagg)" r. ro rb n~ no .~ 7o 7; 7 i 'Y~' 
Bragg-(Bragg) m re re r~ ne-Be n~--Yo-7. 7o 7g 

70 =(I~o. na) and 7~ =(I~g. nD. 

In a similar way to equations (II.14a and b), the 
boundary conditions are given by, 
on the front surface, Se: 

0=do.2.-1 exp [i(ko,2.-1 • re)] + 
do.2. exp [i(ko,2.. re)], (17a) 

on the rear surface, S~: 

0=d,.z,  exp [i(ko.2,. to)] 
+do, z.+~ exp [i(kg,2.+~. ro)], (17b) 

where the numerical suffixes are defined according to 
the rule shown in Fig. 4. Combining these with the 
expression for the amplitude ratio, do. re~do, m= 
2Aqo. m/KCx-o, one can obtain the recurrence formulae 
for do, 2. and do. 2.+ 1 in terms of the Resonanzfehler as 
for equation (II.3). Solving the formulae with initial 
condition (la), one obtains the wave fields in the forms, 

do.2.(r)= I~I Ar/o.2,_2 
/=1 Ar]o, 2l- t 

- -  E . .  exp (i@z.) exp [i(k0.2.. r)] 

(18a) 

n+1 z/r/o. 2z_ ~ - 
do 2.+,(r)= - H E~. exp (i~o2,,+1) 

' l =  Aqo, 21-1 

xexp [i(k0,2.+1. r)] (18b) 

2Aqo,2. ~I Aq°'Ltz2- Ee 
d~,z.(r)- KCx-o l = ,  Ar/o.2,-i 

x exp (i92.) exp [i(kg.2. • r)] (18c) 

do.2.+#)= 2a, o,2. a o. ,_2Ee 
KCx_g t=l Ar/o,21-a 

x exp (i@2.+ 1) exp [i(kg, 2n+ i .  r)] (18d) 

where the phases ~02n and (02.+ x have the same expres- 
sions as equations (II. 17a and b). 

On the other hand, the Resonanzfehler also satisfy 
recurrence formulae like equations (II.A5 and 7). By 
solving these, one can obtain explicit expressions such 
as equations (II.A8a, b, e, and d) in terms of At/0 and 

Aq r By using these expressions, equations (18a, b, c, 
and d) can be rewritten in the forms, 

do, zJr) = Fo,. { - s + (s 2 -  flz),/2 }z. 
f12. exp (i~o2.) 

xexp [i(ko.2.. r)] .  Ee (19a) 

do 2.+t(r)= -1"o .+, { - s  + (sZ-flz)'/z}2"+ 2 
, , ~2n+2 

xexp (i(p2.+1) exp [i(ko,2.+1. r)] .  Ee (19b) 

( x o ) ' ~ V , O l  ( - s + ( s ~ - p 2 ) ' 2 }  2"+1 
d°' 2"(r) = F°'" -X-o- 170 fl2.+1 

x exp (iq~2,,) exp [i(ko. zn. r)].  Ee (19c) 

( 13(0 / 1/2 V ~  O- {--S"~-(S2--~2)1/2} 2"+1 
do 2n+ l(r) = 

' " \ X - o /  t / ,fl 2"+I 

x exp (i~02.+ 1) exp [i(ko.2.+l. r)].  Ee (19d) 

where 
7oln2 

Fo, .= (~o° -~o: (20a) 

7"0 n2+n 

The phase terms {0 m -~-(ko..,. r) are expressed in terms 
of the Resonanzfehler as in the case of the Laue-  
(Bragg)" and, therefore, they are rewritten i a the form 

do 

4 

/ / ~ d o . a  

Fig. 4. The specification of the wave fields of the Bragg (Bragg) m 
cases in the plane-wave theory. 
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of K , y  + K~z + ½ KZo(lo + lo) -- r/t. ,.(SZ -- fl2)UZ-- r/2. mS (see 
Appendix B). The quantities rh.,. and r/z.m are the 
functions of the position parameters, Xo.,. and xo.~ 
defined in Fig. 5. 

The vacuum wave fields are obtained by similar 
procedures to those employed in Section 4 of Part II. 
Writing the G and O waves, Eo. 2n+l(r ) and Eo,2n(r), 
in the forms Eo.2.+a exp [i(Ko.2.+I .r)] and Eo.2. exp 
[i(Ko,2.. r)], respectively, one obtains the additional 
boundary conditions; 
on the front surface S~: 

Eo,2.+l exp [i(Ko,2.+~. r~)] 
=do, zn+t exp [i(ko,2n+l. re)] 
+do.2.+2 exp [i(ko,2.+z. re) ], (21a) 

on the rear surface S~: 

E0.2. exp [i(Ko.2.. r.)] =do,2. exp [i(ko, z. .  r.)] 
+do,2n+l exp [i(ko,2.+1. ra)]. (21b) 

From these, the wave fields are given by 

Eo,2,,+ l ( r )= {do,2. + l(r.) + do, 2. + 2(re)} 
xexp [i(Ko,2.+a. ( r - r . ) ) ]  (22a) 

Eo, z.(r) = {do, z.(ra) + do, 2. + l(r.)} 
× exp [i(Ko, z,. (22b) 

*3 

se so 

I I 
Fig. 5. The Bragg-(Bragg)"' case. F,. is constructed by the same 

method as in the Laue-(Bragg)" case. (10.~; /9.,.) are the 
coordinates referred to the oblique axes (K0 and I~ o) with the 
origin at Fro. (xo.,.; xo.,.)=sin 20B(lo,m, lo,ra), the case for 
m = 2 being illustrated. 

It is straightforward to represent them in terms of the 
deviation parameter s as in the case of equations (19) 
for the crystal waves. 

(b) Spher ica l -wave  theory  

As in the Bragg case, the spherical-wave solutions 
of the crystal waves are constructed from the plane- 
wave solutions (19). The wave fields have the same 
forms as equations (13). Now, the Fourier integrals 
similar to W o etc. defined by equations (14) are to be 
calculated. The details are explained in Appendix A. 
The final expressions are given as follows. 

In the region rh + r/2 > 0: 

{ ( r/2"]-r/l l n+l/2 
~bo.zn(r)=(i)2"zcfl \-~z-Z-~-i / Jz.+~(fll /r/z2-rh z ) 

(//2 31-/71) n-l'2 JZn l(fl F/']22-/']12) } I"on goee (23a) 
+ \ q - - ~ - ~ - - ~ l  - ' " 

/']2 21-/71 ) n 4- 3/2 
l(r) = (i)2nrcfl _ { \ ~---2--~--- ~-1 J2n+a(fl ¢ ~22 - r/12 ) 

+ Jz.+l(fl 1/r/:-r/:)  } to .÷1 .  
\ r/2-- r/1 / 

(23b) 

(ha, 2.(r) = (i) 2"+ l~zflg \-~_g / 

t g :  

r/2 --/71 

(23c) 
( ,~0 1 1/2 

~ba' 2" + l(r) = (i)2" + az~flg \-~--o ! 

× 

\ ri2 -- r/1 

(23d) 

In the region rh + r/2 < 0: 

~bo.,.(r) = ~bg. ,.(r) = 0 (24) 

In the expressions (23), rh and r/2 are abbreviations for 
1/1,., and r/2, r~ respectively, and F0, m, Fg, m, Bo and Bg 
are as previously defined [see equations (20) and (I.48)]. 
In Table 4, the Bessel functions appearing in the expres- 
sions (23) are listed. 

Table 4. Besse l  f u n c t i o n s  appear ing  in the express ions  
f o r  the wave  f i e lds  

o G 
Bragg 3"1 3"1 Jo ,/2 
Bragg-(Bragg) 2" Jzn- 1 Jzn + 1 Jzn Jz. + 2 
Bragg_(Bragg)2. + t Jzn + 1 Jzn + 3 Jzn Jz. + 2 
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As in the case of Laue-(Bragg) m, the wave fields (23) 
are represented in terms of the position parameters 
No. m and xo.,, by using the expressions of F/2, m ~JTl,m 
given in Appendix C. In particular, the arguments of 
the Bessel functions are transformed by 

~L.,-ULm 70 = lTol Xo.,,,xo.,,. (25)  

Since XO, m and xo. m are the perpendiculars from the 
observation point P as defined in Fig. 5, the wave 
fields show Pendell6sung fringes of hyperbolic form, 
the asymptotes being the lines g~0 and Ko passing 
through a point F,, which is defined in Fig. 5. 

The vacuum wave fields are obtained by the Fourier 
transform of the plane-wave solutions (22a and b). 
Obviously, they are the projection of the crystal wave 
fields on the crystal surfaces Se or S,, along either one 
of the directions g~o or Ko. 

In the case when the crystal is terminated by a 
surface, the crystal waves may arrive at the surface 
under the condition of the Laue case. Each of the wave 
fields of the Bragg-(Bragg)m-Laue case can be easily 
obtained by the projection of the crystal wave fields 
on such a surface along K0 or g'o. 

4. Discussion 

The series of papers (Kato, Katagawa & Saka, 1971; 
Saka, Katagawa & Kato, 1972a, b) and the present 
one treat the wave fields created on the plane surfaces 
of a perfect crystal. Both plane-wave and spherical-wave 
theories are developed. The waves are described by 
successive reflexions and transmission at the surfaces. 
The diffraction phenomena in more general cases in 
which the crystal is of finite polyhedral form can be 
correctly given by a superposition of the wave fields 
obtained for the cases of Bragg-(Bragg) m or Laue- 
(Bragg) m and Laue (Kato, 1968) as described in the 
Discussion (a) of Part II. 

Here, some of the mathematical structures and the 
physical interpretations of the wave fields are dis- 
cussed. 

(a) Compatibility of  the Bragg and Laue-Bragg solu- 
tions 

In Part I in which the Laue-Bragg cases were dealt 
with, it was shown that the crystal wave field of Type I 
in the region C/[J of Fig. 1.3(a) is a superposition of 
the cylindrical wave emitted from the entrance point 
E and the reflected one which is a cylindrical wave 
emitted from an imaginary source F,,. If the entrance 
point happens to be the edge of the crystal, i.e. the 
intersection of the surfaces Se and Sa, it is expected 
that the two cylindrical waves coincide in space. It 
is interesting to note that the present solution of the 
Bragg case [cf equations (16a and b)] is identical to the 
sum of the wave fields of the Laue and Laue-Bragg 
cases [of. equations (I.50a and b)]. Thus, the solution 
obtained as the Bragg case is compatible with the 

solution obtained as the Laue and Laue-Bragg cases. 
In more general cases when the crystal is terminated 

by the rear surface, the symbolic relation among the 
wave fields, 

Bragg-(Bragg) '= (Laue and Laue-Bragg)-(Bragg)", 
can be seen. Here, tile Laue-(Bragg)'" case and Laue- 
(Bragg) '"+t case are obviously of Types II and I 
respectively. This relation is clear because subsequent 
reflexions at the rear and front surfaces are irrelevant to 
how the initial crystal waves are excited. In fact, if one 
admits this argument, Table 4 of the present paper can 
be derived directly from Table II. 1 without any detailed 
calculation. 

(b) Energy-flow considerations 
The compatibility of the Bragg and Laue-Bragg 

cases discussed above enables us to interpret correctly 
the present solution of the Bragg case in terms of 
energy flow. If one considers hypothetically an X-ray 
source Eo inside the crystal, instead of the real entrance 
point E [see Fig. 6(a)], the wave field calculable as the 
Laue-Bragg case is close to the present solution of the 
Bragg case provided that Eo is close to E. Then, the 
crystal waves call be interpreted in terms of the bundle 
of rays, one part of which propagates from E0 directly 
into the triangular region MEol, while the remaining 
part propagates first into the triangular region KEoM 
and is next reflected inside the triangular region C/fJ. 
The vacuum waves are the waves of the latter part 
transmitted through the crystal surface. If the distance 
EEo is made infinitesimal, the point A" tends to E and 
the rays propagating inside the triangular region KEoM 
arrive at the point E. They are partly transmitted into 
vacuum from the point E, and partly reflected and give 
rise to the crystal wave fields starting from E. Only the 
rays propagating in the infinitesimally narrow direc- 
tions parallel to EoM lead to waves propagating along 
the crystal surface and the vacuum waves connected 

E~ Eo_ ," 
/ 

- i A 

I l(J) 

d 
C M C(M) 

(a) (h) 

Fig. 6. Interpretation of the energy flow in the Bragg case. 
(a) A hypothetical arrangement. E0: Hypothetical point 
source. E: Real entrance point. EoM is parallel to the crystal 
surface. (b) Real arrangement. 
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with them. In this way one can obtain a picture of 
energy flow as described in Fig. 6(b). 

Incidentally, the imaginary surface denoted by the 
dotted line in Fig. 6(a) for calculating the initial wave 
field is arbitrary because the wave field of the Laue 
case is independent of the crystal surface assumed. 
The hypothetical procedure adopted for initial consid- 
eration of the Laue-Bragg case is merely a matter of 
convention and is equivalent to taking a point source 
at E0 inside the crystal. 

(¢) Comparison with Uragami's results 
The spherical-wave solutions presented in this series 

of papers are essentially equivalent to the solutions 
given by Uragami (1969, 1970, 1971) except for a con- 
stant factor. The difference can be avoided by taking a 
correct function as the incident wave in the formula- 
tion of dynamical theory by Takagi (1962, 1969) and 
Taupin (1964). 

In the spherical-wave theory, the incident wave is 
assumed to be exp (iKr)/4nr, which is given by the 
integral expression (I.45). The problem is to find the 
approximate function for the spherical wave which 
effectively explains the crystal diffraction at the 
entrance surface Se. With the same approximations as 
those used in the present approach for calculating the 
crystal wave fields, the spherical wave can be repre- 
sented on the surface Se in the form 

[ exp (iKr) ] _ i ~ 2zr 
4zcr ,=,e 8zc2 Kz 

x exp i ( -  ~- + Kze) exp (iK~xe)dK~ 

-4~  ~ e x p  i(-~+Kze) 6(xe) (26) 

/ 
~ c(-) 

where the suffix e indicates the entrance point. In the 
Takagi-Taupin approach, therefore, the expression 
(26) must be used instead of the Dirac delta function 
fi(x) as the incident function. In addition, if the phase 
factor due to the mean wave vector k0, namely 

exp [i(~:0. (r-re))] = exp {i[½KZo(lo + lo)+ K(z-ze)]} 
(for the O wave) (27a) 

o r  

exp {i[2~z(g. re)+(ko. (r-re))]} 
=exp {i[2rc(g. r)+½Kzo(lo+ lo)+ K(z-ze)]} 

(for the G wave), (27b) 

is multiplied by the solutions obtained by Uragami, it 
turns out that the final results are identical to the 
present ones. 

The compatibility of the Laue and Laue-Bragg 
cases is satisfied automatically by taking the present 
function (26) without the use of the rather arbitrary 
function in Uragami's approach. The effects of the 
mean polarizability and absorption can be properly 
dealt with by taking the factors (27). 

APPENDIX A 
Fourier integrals 

In the spherical-wave theory, the following complex 
integrals are used: 

win= f +~+'' {--Z+(Z2--P2I"2}m 
d _ oo.+ s I 1~ ra 

× exp {i[-rh(zz-fl z) 1/2-~2z]}dz. (A1) 

The path of integration is shown by the bold line with 
arrow in Fig. 3(b). The integration can be carried out 
by the standard method of contour integrals. In the 
present case it is easily shown that 

fc(_Im(z)dz=O (rh + r/2 > 0) (A2a) 

(A2b) 

where Is(z) means the integrand in equation (A1) and 
the contours C(+ ) are the semicircles denoted in Fig. 
7. For the case r/1 + r/2 < 0, therefore, IV,, is always null. 
In the other case W,, is given by the integral taken on 
the path C enclosing two singular points, z=  +/3. 
Defining the variable ~0 by the relations z = - , 8  sin cp 
on/1 and l 4 and z=fl sin (o on/2 and l 3 in Fig. 7, one 
obtains 

Fig. 7. The path of integration. The contour C is [ll +/2 + 13 +/41. × exp [ifl(-- iql cos ~0 -- r/z sin ~0)]d~o. (A3) 
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The integral is exactly the same as the integral con- 
sidered in equation (I.A6), so that one can obtain 

W m =  Ttfl(i)m [ (/'/2"1-/'/lt-m-+l" jm+l(f l  ~-~2~.~l,]12 ) 
\r /s-- t i t~ 

(/']2-{-/71) m+l- ] + \-2~_~ .... -" s ~ _ l ( / ~ / ~ ' - C )  (~1+~2>o). 

(A4) 

A P P E N D I X  B 

The phase terms "~m : ~m -~- (ko.m.r) 

By the use of equations (II. 17a and b),1" one obtains the 
recurrence formulae 

~2 .+ t=~2 .+{(ko ,2 .+ l -ko ,2 . ) .  ( r - r . ) }  (Bla)  

~2 .=~2 . -x+{(ko .2 . -ko .2 . - t ) .  ( r - r e ) } .  (Blb) 

The vectors r - r .  and r - r ~  are represented as follows 
in terms of coordinates (10, m ; Io. m) with reference to the 
oblique axes (f(o and I~o)with the origin at Fm (cf. 
Fig. 5). 

r--ra=lo,2.+llfo+lo,2nl(g (r. fixed at A2.+1) (B2a) 

=/0.z.K0+/o.,.+~f( (ra fixed at A~'.+~) (B2b) 

r - -  r e :  lo, 2n_ lK  0 + lo, 2nK o (r~ fixed at E2n) (B3a) 

=/o,2.Ko+/o,2._,I~o (re fixed at E~,*,). (B3b) 

Since the Resonanzfehler are defined by Aqo. m = 
[Ko. (km-~:)] and A%., .=[K o . (kin-k)]  [see equations 
(II.A2)], the curly brackets in the right of equations 
(B 1) are given by the Resonanzfehler. For example, by 
the use of equation (B2a), it follows that 

{(ko, 2. + ~-ko ,2 . )  • ( r -  r.)} 
= 10.2. + 1(At/o, 2. + 1 - ArM 2,,) 
+/0, 2.(A%. 2. +1 - ArM 2.). ( a  4) 

As mentioned in the text each Resonanzfehler is 
proportional to either dqo or dqo, and the phase Cm 
must be given by the form 

~Om = {Kyy+ K~z +½KXo(lo + lo)} 
_ {~, .  , ( s  2 _ ~ 2 ) , / ,  + q2.,,,s} 

where the first term comes from the expression (7) for 
Co and 1'/1. m and 1/2,., are represented by a linear com- 
bination of (Xo,.,; xo, m), i.e. sin 20a(lo, ,.; lo, m). 

A P P E N D I X  C 
The expressions for ~2.,, + lql,m 

Substituting equations (B2a and 3a) into equations 
( B l a  and b) respectively, and collecting the effective 
terms for r/2.m+ql.,, by means of the operator [ ]+ 

I" Replace the suffixes a and b by e and a, respectively. 

defined in the conjunction with equations (I.B7), one 
obtains the relations 

[(p2n + 11 + ~--- [(P2n] + q-loo2n+lZJt~O, 2n+l--lo.2nZ~l~o,2 n (Cla)  
[92.1+ =[¢2,,-1]+ + lo,2,,Arlo.2.-Zo,2.-1Arlo,2.-1. (Clb)  

In deriving these, one uses the relation, [dr/o.2,,]+= 
[ArM 2, +1] + = 0, which follows from the expressions 
(I[.A8a and d).~ The total sum of these recurrence 
formulae gives the relations, 

[~2,, + 11+ =/o. 2. + 1A%,2. +1 (C2a) 
[¢2.1+ =1o.2nA%.2,,. (CZb) 

Similarly, by the use of equations (B2b and 3b) 
instead of equations (B2a and 3a), one obtains the 
relations 

[fo2.+l]_=l..2.+lAVo.2.+l (C3a) 
[92,,]- = lo. 2.Aqo. 2. ( C 3b) 

for the purpose of calculating r/2..,-r/1..,. Finally, 
since every Resonanzfehler is proportional to Ar/o or 
Aqo [see equations (II.A8)], from equations (C2 and 
C3) and the expressions in Table 1 for the Resonanz- 
fehler, we obtain the relations, 

r/2.2,,+rh.2,, = (7 4 7 o ' ] "  (C4a) Yo' } Xo. 2. 

Yo ( Yo Yo'_'~ TM 
~,.~,,+,+ql.,.+~=~{j ~o ~, ' :  xo.~,,+x (c4b) 

Yo ()'-~o-7o']" (C4c) 
~2.5, - ~1.2,, = i )'o[ "/o' ! xo. ~,, 

rh,2,,+l-rh,2,,+l = - , x0,2.+1 • (C4d) 

Replace the factors y according to Table 3. 
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